Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.

Identifieur interne : 000F71 ( Main/Exploration ); précédent : 000F70; suivant : 000F72

Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.

Auteurs : P Ivi L H. Rinne [Norvège] ; Laju K. Paul [Norvège] ; Christiaan Van Der Schoot [Norvège]

Source :

RBID : pubmed:30290771

Descripteurs français

English descriptors

Abstract

BACKGROUND

The performance and survival of deciduous trees depends on their innate ability to anticipate seasonal change. A key event is the timely production of short photoperiod-induced terminal and axillary buds that are dormant and freezing-tolerant. Some observations suggest that low temperature contributes to terminal bud initiation and dormancy. This is puzzling because low temperatures in the chilling range universally release dormancy. It also raises the broader question if the projected climate instabilities, as well as the northward migration of trees, will affect winter preparations and survival of trees.

RESULTS

To gauge the response capacity of trees, we exposed juvenile hybrid aspens to a 10-h short photoperiod in combination with different day/night temperature regimes: high (24/24 °C), moderate (18/18 °C), moderate-low (18/12 °C) and low (12/12 °C), and analysed bud development, dormancy establishment, and marker gene expression. We found that low temperature during the bud formation period (pre-dormancy) upregulated dormancy-release genes of the gibberellin (GA) pathway, including the key GA biosynthesis genes GA20oxidase and GA3oxidase, the GA-receptor gene GID1, as well as GA-inducible enzymes of the 1,3-β-glucanase family that degrade callose at plasmodesmal Dormancy Sphincter Complexes. Simultaneously, this pre-dormancy low temperature perturbed the expression of flowering pathway genes, including CO, FT, CENL1, AGL14, LFY and AP1. In brief, pre-dormancy low temperature compromised bud development, dormancy establishment, and potentially vernalization. On the other hand, a high pre-dormancy temperature prevented dormancy establishment and resulted in flushing.

CONCLUSIONS

The results show that pre-dormancy low temperature represents a form of chilling that antagonizes dormancy establishment. Combined with available field data, this indicates that natural Populus ecotypes have evolved to avoid the adverse effects of high and low temperatures by initiating and completing dormant buds within an approximate temperature-window of 24-12 °C. Global warming and erratic temperature patterns outside this range can therefore endanger the successful propagation of deciduous perennials.


DOI: 10.1186/s12870-018-1432-0
PubMed: 30290771
PubMed Central: PMC6173867


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.</title>
<author>
<name sortKey="Rinne, P Ivi L H" sort="Rinne, P Ivi L H" uniqKey="Rinne P" first="P Ivi L H" last="Rinne">P Ivi L H. Rinne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas</wicri:regionArea>
<wicri:noRegion>Aas</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paul, Laju K" sort="Paul, Laju K" uniqKey="Paul L" first="Laju K" last="Paul">Laju K. Paul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas</wicri:regionArea>
<wicri:noRegion>Aas</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Der Schoot, Christiaan" sort="Van Der Schoot, Christiaan" uniqKey="Van Der Schoot C" first="Christiaan" last="Van Der Schoot">Christiaan Van Der Schoot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway. chris.vanderschoot@nmbu.no.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas</wicri:regionArea>
<wicri:noRegion>Aas</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30290771</idno>
<idno type="pmid">30290771</idno>
<idno type="doi">10.1186/s12870-018-1432-0</idno>
<idno type="pmc">PMC6173867</idno>
<idno type="wicri:Area/Main/Corpus">000C34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C34</idno>
<idno type="wicri:Area/Main/Curation">000C34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C34</idno>
<idno type="wicri:Area/Main/Exploration">000C34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.</title>
<author>
<name sortKey="Rinne, P Ivi L H" sort="Rinne, P Ivi L H" uniqKey="Rinne P" first="P Ivi L H" last="Rinne">P Ivi L H. Rinne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas</wicri:regionArea>
<wicri:noRegion>Aas</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paul, Laju K" sort="Paul, Laju K" uniqKey="Paul L" first="Laju K" last="Paul">Laju K. Paul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas</wicri:regionArea>
<wicri:noRegion>Aas</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Der Schoot, Christiaan" sort="Van Der Schoot, Christiaan" uniqKey="Van Der Schoot C" first="Christiaan" last="Van Der Schoot">Christiaan Van Der Schoot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway. chris.vanderschoot@nmbu.no.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas</wicri:regionArea>
<wicri:noRegion>Aas</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climate Change (MeSH)</term>
<term>Cold Temperature (MeSH)</term>
<term>Fraxinus (genetics)</term>
<term>Fraxinus (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Photoperiod (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Shoots (growth & development)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basse température (MeSH)</term>
<term>Changement climatique (MeSH)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Fraxinus (génétique)</term>
<term>Fraxinus (physiologie)</term>
<term>Photopériode (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fraxinus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fraxinus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Fraxinus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fraxinus</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate Change</term>
<term>Cold Temperature</term>
<term>Gene Expression Regulation, Plant</term>
<term>Photoperiod</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Changement climatique</term>
<term>Photopériode</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The performance and survival of deciduous trees depends on their innate ability to anticipate seasonal change. A key event is the timely production of short photoperiod-induced terminal and axillary buds that are dormant and freezing-tolerant. Some observations suggest that low temperature contributes to terminal bud initiation and dormancy. This is puzzling because low temperatures in the chilling range universally release dormancy. It also raises the broader question if the projected climate instabilities, as well as the northward migration of trees, will affect winter preparations and survival of trees.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>To gauge the response capacity of trees, we exposed juvenile hybrid aspens to a 10-h short photoperiod in combination with different day/night temperature regimes: high (24/24 °C), moderate (18/18 °C), moderate-low (18/12 °C) and low (12/12 °C), and analysed bud development, dormancy establishment, and marker gene expression. We found that low temperature during the bud formation period (pre-dormancy) upregulated dormancy-release genes of the gibberellin (GA) pathway, including the key GA biosynthesis genes GA20oxidase and GA3oxidase, the GA-receptor gene GID1, as well as GA-inducible enzymes of the 1,3-β-glucanase family that degrade callose at plasmodesmal Dormancy Sphincter Complexes. Simultaneously, this pre-dormancy low temperature perturbed the expression of flowering pathway genes, including CO, FT, CENL1, AGL14, LFY and AP1. In brief, pre-dormancy low temperature compromised bud development, dormancy establishment, and potentially vernalization. On the other hand, a high pre-dormancy temperature prevented dormancy establishment and resulted in flushing.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The results show that pre-dormancy low temperature represents a form of chilling that antagonizes dormancy establishment. Combined with available field data, this indicates that natural Populus ecotypes have evolved to avoid the adverse effects of high and low temperatures by initiating and completing dormant buds within an approximate temperature-window of 24-12 °C. Global warming and erratic temperature patterns outside this range can therefore endanger the successful propagation of deciduous perennials.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30290771</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Oct</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>220</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1432-0</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The performance and survival of deciduous trees depends on their innate ability to anticipate seasonal change. A key event is the timely production of short photoperiod-induced terminal and axillary buds that are dormant and freezing-tolerant. Some observations suggest that low temperature contributes to terminal bud initiation and dormancy. This is puzzling because low temperatures in the chilling range universally release dormancy. It also raises the broader question if the projected climate instabilities, as well as the northward migration of trees, will affect winter preparations and survival of trees.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">To gauge the response capacity of trees, we exposed juvenile hybrid aspens to a 10-h short photoperiod in combination with different day/night temperature regimes: high (24/24 °C), moderate (18/18 °C), moderate-low (18/12 °C) and low (12/12 °C), and analysed bud development, dormancy establishment, and marker gene expression. We found that low temperature during the bud formation period (pre-dormancy) upregulated dormancy-release genes of the gibberellin (GA) pathway, including the key GA biosynthesis genes GA20oxidase and GA3oxidase, the GA-receptor gene GID1, as well as GA-inducible enzymes of the 1,3-β-glucanase family that degrade callose at plasmodesmal Dormancy Sphincter Complexes. Simultaneously, this pre-dormancy low temperature perturbed the expression of flowering pathway genes, including CO, FT, CENL1, AGL14, LFY and AP1. In brief, pre-dormancy low temperature compromised bud development, dormancy establishment, and potentially vernalization. On the other hand, a high pre-dormancy temperature prevented dormancy establishment and resulted in flushing.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The results show that pre-dormancy low temperature represents a form of chilling that antagonizes dormancy establishment. Combined with available field data, this indicates that natural Populus ecotypes have evolved to avoid the adverse effects of high and low temperatures by initiating and completing dormant buds within an approximate temperature-window of 24-12 °C. Global warming and erratic temperature patterns outside this range can therefore endanger the successful propagation of deciduous perennials.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rinne</LastName>
<ForeName>Päivi L H</ForeName>
<Initials>PLH</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paul</LastName>
<ForeName>Laju K</ForeName>
<Initials>LK</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Schoot</LastName>
<ForeName>Christiaan</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432, Aas, Norway. chris.vanderschoot@nmbu.no.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>192013 and 263117</GrantID>
<Agency>Norwegian Research Council</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="N">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031661" MajorTopicYN="N">Fraxinus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="N">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">1,3-β-Glucanases</Keyword>
<Keyword MajorTopicYN="N">Callose</Keyword>
<Keyword MajorTopicYN="N">Chilling</Keyword>
<Keyword MajorTopicYN="N">Climate change</Keyword>
<Keyword MajorTopicYN="N">Dormancy Sphincter Complexes</Keyword>
<Keyword MajorTopicYN="N">Ecotype</Keyword>
<Keyword MajorTopicYN="N">Flowering</Keyword>
<Keyword MajorTopicYN="N">Gibberellin</Keyword>
<Keyword MajorTopicYN="N">Plasmodesmata</Keyword>
<Keyword MajorTopicYN="N">Terminal bud</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30290771</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1432-0</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1432-0</ArticleId>
<ArticleId IdType="pmc">PMC6173867</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1970 Sep 25;169(3952):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jan;69(2):332-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21950734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Sep;35(5):613-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12940954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 24;462(7276):1052-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20033047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Mar;99(3):375-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Apr;13(4):739-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1217:157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25287203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22702736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jan;173(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27756819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Jul;2(7):e106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Nov;67(21):5975-5991</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27697786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Oct;88(2):424-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 May;8(5):796-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25636918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biometeorol. 2013 Sep;57(5):679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23053065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Oct;35(10):1707-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22670814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biometeorol. 2014 Aug;58(6):1195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23958788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2013 Mar;140(6):1147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23444347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Apr;25(4):1228-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 17;5:732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25566302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Sep;13(9):627-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22898651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16831-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Apr;125(8):1477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9502728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Mar;27(3):385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Mar;61(6):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Apr;65(7):1699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24368502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Sep 10;525(7568):201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26331545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Jan;180(1):120-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Jun;41(6):1298-1310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29341173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Mar;22(5):1214-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23094714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Feb;17:86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24507499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):354-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 May;26(3):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11439114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 24;4:272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23898339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 10;102(19):7037-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):613-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27376674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):819-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26293953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 May;61(9):2247-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 8;427(6970):164-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14712277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Jan;4(1):31-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 23;5:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Nov;66(21):6745-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26248666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="Rinne, P Ivi L H" sort="Rinne, P Ivi L H" uniqKey="Rinne P" first="P Ivi L H" last="Rinne">P Ivi L H. Rinne</name>
</noRegion>
<name sortKey="Paul, Laju K" sort="Paul, Laju K" uniqKey="Paul L" first="Laju K" last="Paul">Laju K. Paul</name>
<name sortKey="Van Der Schoot, Christiaan" sort="Van Der Schoot, Christiaan" uniqKey="Van Der Schoot C" first="Christiaan" last="Van Der Schoot">Christiaan Van Der Schoot</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30290771
   |texte=   Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30290771" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020